Prêtable
Titre : | Calcul différentiel : Cours et exercices corrigés |
Auteurs : | Léonard Todjihounde |
Type de document : | texte imprimé |
Mention d'édition : | 3 ème éd. |
Editeur : | Paris [France] : Cépaduès-éditions, 2013 |
ISBN/ISSN/EAN : | 978-2-36493-074-2 |
Format : | 348 p. / couv. en coul. / 24 cm. |
Langues: | Français |
Langues originales: | Français |
Index. décimale : | 515.33 (Calcul différentiel) |
Catégories : | |
Mots-clés: | Calcul différentiel ; Equations différentielles ; Théorèmes du rang |
Résumé : |
Le calcul différentiel est un outil dont tout mathématicien, quelle que soit sa spécialité, doit en posséder les rudiments. Même les spécialistes de mathématiques discrètes ne peuvent s'en passer, car l'on ne peut bien explorer, bien appréhender le discret que si l'on connaît un peu mieux le continu, avec les nombreux et ingénieux outils mathématiques qui y ont été développés au cours du temps, que si l'on a une idée des limites et restrictions de ces outils et des possibilités éventuelles de leur adaptation ou de s'en inspirer face à des situations discrètes.
Destiné à l'usage aussi bien des étudiants en licence de mathématiques que des enseignants, cet ouvrage débute par un rappel des prérequis topologiques nécessaires pour aborder les notions exposées dans la suite. L'auteur a voulu ce rappel sur les espaces vectoriels normés le plus détaillé et le plus complet possible pour permettre à l'utilisateur de faire le point de ces notions sans trop d'effort et sans perdre du temps à les rechercher dans les livres de topologie. L'approche pédagogique utilisée permet au lecteur de cerner assez rapidement et dans tous leurs contours les concepts exposés et de comprendre dès le début l'architecture des démonstrations des théorèmes et propositions. Outre les chapitres classiques généralement traités dans les livres de calcul différentiel, un chapitre sur les fonctions convexes différentiables attirera l'attention du lecteur sur les propriétés intéressantes qui découlent du couplage de ces deux notions ; quant au chapitre sur les théorèmes du rang, il fait ressortir l'importance et les conditions de linéarisation d'une application au voisinage d'un point. |
Note de contenu : |
Sommaire :
Chapitre 1: Rappels sur les espaces de banach Chapitre 2: Applications différentiables Chapitre 3: Théorème des accroissements finis Chapitre 4: Inversions locales et fonctions implicites Chapitre 5: Théorèmes du rang Chapitre 6: Différentielles d'ordre superieur Chapitre 7: Fonctions convexes différentiables Chapitre 8: Intégration des fonctions reglées Chapitre 9: Formules de taylor Chapitre 10: Extrema relatifs d'une fonction Chapitre 11: Sous-variétés de Rn Chapitre 12: Equations différentielles Chapitre 13: Formes différentielles |
Exemplaires (4)
Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|
F8/10140 | Livre | Bibliothèque de la Faculté de Technologie | Section documentaire | Disponible |
F8/10141 | Livre | Bibliothèque de la Faculté de Technologie | Section documentaire | Disponible |
F8/10142 | Livre | Bibliothèque de la Faculté de Technologie | Section documentaire | Disponible |
F8/10143 | Livre | Bibliothèque de la Faculté de Technologie | Section documentaire | Disponible |